

Final Scientific Programme G5744 ARW: "Cybersecurity of Industrial Control Systems (ICS)"

List of Abstracts

No.	Authors	Title	Abstract
1	R. Alguliev	Some actual problems of	Issues of creating cyber physical systems (CPSs) in various
		the formation and	spheres in Azerbaijan under the influence of the 4th
		comprehensive security of	industrial revolution is being considered. In this regard,
		cyber-physical systems in	some actual scientific and practical problems and their
		Azerbaijan	conceptual solutions for ensuring the smart security of
			critical CPSs are outlined.
2	G. Sadovsky	Computer and Network	The talk reviews the highlights of computer and Internet
		Security in an Increasingly	security and the implications for industrial control systems.
		Complex World	I discuss the growth of the cybercrime industry, the
			components of incident and security attack surfaces, our
			urrent situation and how we are responding to it, and some
			special considerations that are introduced by physically
			dispersed industrial control systems
3	M. Maj	Cyber fortress -	Cyber Fortress is a strategic simulation game in
		cybersecurity simulation	cybersecurity area. The main idea and the task during the
		game.	game is to build the best cybersecurity system to prevent
			players' organizations against the most likely threats and to
			effectively react during the incident mitigation phase. Game
			is a perfect tool for building cross-cutting skills and team
			communication. It allows choice and testing different
			strategies and tailor cybersecurity budget to organization
			needs and specificity.
4	K. Szefler	Cybersecurity threat	The presentation will guide the viewers through each step of
		scenario for a hypothetical	the attack scenario taking place in a hypothetical nuclear
		nuclear power plant	power plant facility.
		facility.	The attack utilises an exploit for a programmable logic
			controller found by our cybersecurity laboratory. It disturbs
			a connection to the PLC and as it will be shown in the
			presentation, execution of it could have negative effect on
			the operation of the plant. Tedious task of an adversary to
			hack into the plant has been mapped to the MITRE
			ATT&ACK® framework to provide formalized description
			of the employed tactics and techniques. The standardized
			scenario creates an excellent tool for both awareness and
			technical education.
5	K. Waedt	Cybersecurity Education	The presentation will address some of the cybersecurity
		Programme &	training programmes related to the R&D projects
		Laboratories -	SMARTEST ("smart" model based security testing), ABAC
		Joint Industry and	(Attribute Based Access Control) and SMARTEST2 but
		Universities Cooperation	also cybersecurity trainings that are proposed by Framatome
			GmbH and have also been provided in other countries.
			These trainings target different staff from industry, e.g. (1)
			line/project management and marketing/quality assurance
			for trainings of one to three days, (2) technical staff specific
			trainings, related to cybersecurity of Safety and Operational
			I&C and Electrical Power Systems (EPS) or (3) trainings for
			cybersecurity staff working at NPP sites or at utility
			headquarters.

6	B. Jerman-Blažič	The overall web security	The presented study explore at large the state of the security of the web space over all Internet, but the main
		vulnerabilities in the web	focus is to reveal what are the real factors that shape the
		spaces of 30 European	level of web security in particular country population. The
		countries	web space of 30 European countries is explored and
			compared regarding the identified factors that influence on
			the presence of number of web vulnerabilities and higher
			level of insecurity of the whole space. A specific platform
			for scanning and inspecting the web sites all over the
			internet was designed and applied by respecting the ethical
			rules for scanning web servers. Basic innovative properties
			of the vulnerability scanning tool Vulnet are described.
			web pages are classified according to the level of present
			vulnerabilities based on calculated scores that consider both
			the server core web version and the plug-ins vulnerability.
			The studied web space shows different level of web security
			which is related to the pace of digital advancement.
			Running WCMS in web site is a positive risk factor for the
			presence of higher vulnerability and insecurity, the
			presence of plug-ins is a also a risk factor for a higher
			insecurity. Higher level of digital skills within a country's
			price for internet access as a measure of the internet
			affordability is a negative factor for web insecurity. The
			briefly presented methodology is an original result from
			own development and is based on inclusion of original
			solutions that enable large Internet scanning in relatively
			short period of time. The study of 30 European countries
			and their web spaces regarding the state of the security and
			the identified dependences from different factors is an
			original and is unique in that respect in the known
			interature.
7	O. Illiashenko;	Theoretical and practical	The methodology of analysing integrated security
	V. Kharchenko	issues of security	management system considering features of manufacture
		management systems in	industry 4.0 is discussed. The following aspects security and
		the context of Industry 4.0.	safety (S&S) model are taken into account: (a) level of
			technologies (information, operation, ecological), kinds of
			S&S (physical security, information and cybersecurity,
			nuncuonar and ecological salety). The structure of multilevel S&S management systems with separate
			channels of monitoring control and joint support of
			decision making is analysed. Industrial cases are discussed.
0		A	
8	M. Mammadova;	Architecture of an	Oil and gas companies have an urgent need for
	L. JADFAYHOVA	safety management system	information about the actual state of health and safety of
		for workers employed on	personnel. The concept based on IoT and e-health solutions
		offshore oil and gas	for the development of a system of continuous remote
		platforms	monitoring of safety and health of employees
			simultaneously linking them to the context of the
			environment is proposed. The architecture of a three-level
			geographically distributed intelligent health management
			system for workers on remote offshore oil and gas platforms
	-		TAS DEED DEVELOPED

9	T. Mammadov	New cyber realities in securing Critical Information Infrastructures	As its observed global pandemic brought new realities with it. As most of the people started to work online it observed with two main issues: In one hand fast growing online platforms, markets and so on technical solutions in other hand spreading out cybersecurity and feeling it almost in our daily life. Having less time to adapt new technologies and security rules people who started to work online and connect secure network from a non-secure network also became a thread for the sensitive networks. So, pandemic realities brought new cyber realities in securing and managing networks in critical information infrastructures. And this reality brought a new risk which haven't measured and considered before. Taking into account all new realities, critical information infrastructures, their identification and evaluation models, security issues of these infrastructures, as well as the segregation of critical infrastructures by degree of importance requiring a comprehensive and new approach. Our presentation is about the need of the "update" classic approach to cybersecurity in critical infrastructures
10	S. Mahmudova	Development of an intelligent software system to ensure cyber security through ontology.	taking into account new risks and threats. This study reviews software security, etc. It studies the methods for the analysis of software security. The problems of software protection are identified. The risks for software projects, their management, determination and categories are studied. Software development process includes the construction of an agreed structure for software development. The article describes the ontology of cybersecurity based on standards. The main concepts related to cybersecurity problem and their relationships are reviewed. It studies basic structure, concept, etc. of intelligent software system to ensure cybersecurity
11	M. Hashimov	Personal data security problems in smart city environment.	The concept of smart city is considered as a promising solution to provide effective services to citizens through information and communication technologies. However, the data sensed through various devices when using smart city services poses problems for the security of citizens personal data. To this end, the article analyzes the issues of personal data security in the smart city environment and presents suggestions to solve them to some extent.
12	V. Kharchenko; H. Fesenko; I. Kliushnikov	UAV fleet based monitoring of critical infrastructure objects: planning of application considering failures and cyberattacks.	The structure and tasks of systems for monitoring of pre- and post-accidents of critical infrastructure objects (SMA CIO) such as a NPP based on UAV fleet (UAVF) are discussed. The matrics for planning of UAVF application, dependability modelling and assessment considering failures and cyberattacks on Internet of Drones resources are described. The results of development and research of UAVF and SMA dependability models analysed. Case study for NPP SMA are discussed.
13	F. Abdullayeva	Cybersecurity issues of some class Unmanned Aerial Vehicle systems: A survey.	The application of Unmanned Aerial Vehicles in various areas created problems in the field of cybersecurity, privacy, safety. Gaps in the security system of UAVs allow them to be easily hijacked. The article analyses the security issues of UAVs reviews their attacks scenarios and proposes a fuzzy

			approach to the automatic selection of effective mechanisms to prevent identified attacks. The Drone Backbone Model has been developed to show the impact of attacks on UAVs at different levels. The Backbone Model allows a numerical assessment of the impact of the attack on the system.
14	O. Valikhanli	Methods of detecting cyber-attacks on	As the use of Unmanned Aerial Vehicles (UAVs) increases, so does the number of cyber-attacks on them. Thus, some of
		Unmanned Aerial	the main cyber-attacks on UAVs such as GPS Spoofing,
		Vehicles: A survey	Denial of Service (DoS), Man-In-The-Middle (MITM) and
			etc. are researched. Existing countermeasure methods
			against this kind of attacks are analyzed. Proposed methods
			Advantages and disadvantages of such methods are
			described as well.
15	D Ibushiman F	Compositivo os al-sta ef	The widespread use of UAVs in both the national set
15	Abdullaveva.	methods for detecting	military spheres has made them the focus of industrial
	riouunayeva,	unmanned aerial vehicles	organizations. However, the use of drones has seriously
			affected the privacy of personal data, posed a threat to
			states, national institutions, nuclear power plants, historical
			sites. One way to reduce this threat is to detect malicious dropes. The article analyses the axisting methods in the
			detection of malicious drones and proposes a new approach
			to their detection.
16	A Moons	Cybersecurity of critical	Under the newly proposed FU legislation on cybersecurity
10		European IT	the NIS-2 Directive, the European Research and Education
		infrastructures: GEANT	network GÉANT will most likely be appointed critical
		and NRENs	infrastructure, just like all National Research and Education
			Networks (NRENs). Being in the scope of the NIS directive
			implies that an organisation will have to adhere to strict international standards. Together with the European NRENs
			GEANT has started preparing for things, building upon the
			work done over the past 3 years in the GN4-3 security
			innovation program. In recent years GÉANT has developed
			a security baseline for Research and Education that enables
			the R&E community to get a coherent overview of the maturity of information security in their organisation and
			networks. The baseline is based in international standards
			such as ISO 27001 and NIST and has proven very valuable
			in practice.
			a number of standards for identity management and incident
			management, such as SIRTFI for identity federations and
			the SIM3 model for security incident management as run by
			the Trusted Introducer program.
			In this talk I will give an overview of the most relevant and practical standards for identity management and security
			management and illustrate these with examples for use.
	~~~~		
17	C. Spirito	Cyber Threat Assessment	The next generation of <i>Advanced Reactors</i> include planned
		Autonomous and Remote	interaction for a set period-of-time) and Remote (operating
		<b>Operations for Advanced</b>	with human interaction from a separate physical location)
		Reactors	Operations. Existing Nuclear Reactor architectures include a
			set of safety and security constraints tightly coupled with

			personnel policies and procedures. As Advanced Reactors are fielded with these new Autonomous and Remote operational capabilities, the architectures and associated infrastructure services and components will perceivably expand the overall attack surface and risk calculations with regards to safe and secure operations. This paper is part of an FY21 work program focused on ensuring Advanced Reactor designs are informed with threat-based guidance on design and operation of Secure Architectures with a specific focus on the deployment of Autonomous Systems in support of Advanced Reactor Operations. The next phase of this research program is to complement produce a methodology for assessment of the cyber threat against these architectures as well as a catalogue of Use Cases to support the Advanced Reactor community in their implementation of Autonomous and Remote Operations.
18	J. Suchorab	Vulnerability research of	The presentation will focus vulnerability research of
		programmable logic	programmable logic controllers. Being one of the most
10	P. Wataan	controllers using fuzz testing method.	popular vulnerability discovery techniques, fuzz testing was chosen as a testing method. The aim of the study was to prove the effectiveness of fuzz testing in the search for vulnerabilities of programmable logic controllers. The research was undertaken in order to develop a specific fuzz testing methodology allowing to test the security of industrial protocols stack implementation in firmware of this devices. A fuzzing laboratory testbed has been designed with the purpose of conducting various fuzzing tests. The presentation will describe the theoretical fundamentals of the fuzz testing and will walk through the systematic methodology of testing. The process of discovering and investigating a zero-day vulnerability in a Siemens S7-1500 series PLC will be discussed as it served as a basis for establishing the methodology. Lastly, several case studies will be introduced, that will share technical details of the vulnerabilities found using the presented methodology and pinpoint the effect and potential consequences that the exploitation of the vulnerable device may have on the whole industrial process that relies on PLCs.
19	B. Watson	Open inference networks	Both ad hoc and structured networking of IoT devices leaves ample opening for cybersecurity issues – made worse by the relatively limited computing power available for cyber defence. In this work, we consider a robust inferencing architecture/structure which can be used for complex event processing (CEP) of "normal" IoT events, but also cyber security (threat) events.
20	M. Hashimov; R. Alakbarov	Cyber security problems in cloud-based SCADA systems	The article explores the conceptual model and security issues of cloud-based SCADA systems which is widely used in the monitoring and management of the oil and gas industry. It highlights existing vulnerabilities that could restrict the security of cloud-based SCADA systems. For this purpose, this article analyzes security problems and risks in the use of cloud-based SCADA systems and provides recommendations for their solution.

21	W. Graniszewski	A Cybersecurity Testbed	Recently, cybersecurity issues of Industrial Control Systems
		for Industrial Control	(ICS) have focused the attention of many stakeholders.
		Systems	Among them there are academia and the scientific
			community. The industry has developed numerous control
			systems and devices like Programmable Logic Controllers
			(PLCs), distributed control systems (DCS), Supervisory
			Control And Data Acquisition (SCADA).
			These systems control plants and exchange data using
			several dedicated communications protocols, e.g. Modbus,
			Fieldbus, Industrial Ethernet, etc. In the beginning, in the
			1970s and 1980, legacy systems were designed with
			assumption that these systems will be not accessible from
			integration of Operational Tachnology (OT) with the
			accompany's hybrid as not works accompany of hoth was one
			of the cybersecurity requirements. One of the first standards
			within this area was coordinated by the International
			Society of Automation (ISA) as ISA95 Enterprise-Control
			System Integration which based on the Purdue Reference
			Model. During the last decades. ISA95 naturally evolved to
			ISA/IEC 62443 standard.
			A natural development of ICS and integration with other
			business systems increase cybersecurity threats. To evaluate
			different devices, communication protocols, topologies, and
			for ICS testhads. At Warsaw University of Teshnology
			(WUT) Eaculty of Electrical Engineering (EE), we have
			integrated several elements of industrial equipment and
			systems with husiness infrastructure. We use this
			environment to test different attacking scenarios and collect
			data to evaluate different machine learning algorithms.
			particularly Convolutional Neural Networks (CNN).
			Keywords — industrial control systems, cybersecurity,
			industrial security control, safety, supervisory control and
			data acquisition (SCADA), machine learning algorithms,
			convolutional neural networks (CNN).
22	G. Visky	Cyber environment for	This presentation introduces an environment for cyber-
		maritime sector	related education and maritime-related cyber research that is
			flexible enough to adapt to specific needs. The proposed
			environment has enormous potential in education and
			introduced environment eine net to provide seiling related
			avpariance but focuses on the consequences of other attacks
			and how to react to those attacks. Furthermore, the
			environment offers a maritime-related climate for cyber
			experts to conduct experiments.
			· · · · · · · · · · · · · · · · · · ·
23	A. Iqbal,	On the Beckhoff PLC	The advent of smart buildings and smart cities has increased
	J. Olegård,	Security and Forensic	the use of Operational Technology (OT) and Industrial
	O. Popov	Analysis	control systems (ICSs). Recent trends of cyberattacks on OT
			of various sorts demands more attention for forensic and
			security analysis of such environments. The paper studies
			and examines a case of a widely used PLC, the Beckhoff
			CX9020 PLC, from a digital forensic perspective. Initially,
			a FLC is configured to log as many activities as possible
			using the available options. The next step is to test a set of

			basic cyberattacks on the PLC. Finally, we devise a
			framework for a forensic acquisition and analysis of the
			system. Apparently, while the system supports certain
			evidence gathering in the form of logging, it appears that
			this evidence is insufficient to make more definite
			conclusions about the nature of the cyberattacks. Finally, a
			discussion follows that covers the general impact and
			eventually a few possible improvements to the forensic
			readiness of the basic system
24	S Aklaylak	Cyber Security Challenges	In this talk, we give a brief survey on the importance of
24	5. Akieyiek	Cyber Security Chanenges	not another and a second by by describing summer
		and Opportunities in	post-quantum cryptography by describing current
		Quantum Era	approaches in cyber security. The talk provides details on
			applied cryptography for cyber security. Then, we discuss
			the computationally hard problems used in post-quantum
			cryptographic schemes focusing on lattice-based and code-
			based cryptography. The focus will be given to NIST Post-
			Quantum Cryptography Standardization Project in view of
			cyber security applications, formal analysis/verification and
			performance.
25	B. Nabiyev	Investigation of computer	Industrial Control Systems (ICS) are complex systems of
		incidents for cyber-	sensors, hardware, programmable logic controllers, and
		physical infrastructures in	communications that are linked together to perform
		industrial control systems	monitoring and control tasks in a variety of industries. ICS
		Digital forensics for	has a wide range of critical applications and infrastructures
		ICS/PLCs	it is means delay or shutdown of these systems can lead to
		100/1103.	irreversible consequences. For example, SamSam
			Shamoon Stuynet and Triton are just a few of the popular
			viruses that target ICS. They did a lot of demaga. However
			Viruses that target ICS. They did a lot of damage. However,
			ICS has poses a number of issues that make it particularly
			difficult to defend against determined attackers. For
			investigation, defeating, and preventing cybersecurity
			attacks we need to do the right digital forensics for ICS.
•			
26	C. Spirito	Incorporating Cyber	Ensuring the safe operation of elements within the Nuclear
		Denial and Deception	and Radiological Domains requires a
		Capabilities	proven approach to handling the cyber-security risk that is
		into the Nuclear and	associated with the use of interconnected digital systems.
		<b>Radiological Domains</b>	The most common approach to this problem is to implement
			cyber-security best practices into the design of domain
			systems and field a cyber-defense capability centered on
			detection and response to anomalies that may indicate that a
			cyber-attack has taken place. One capability suite that is not
			often included within these best practices is Cyber Denial
			and Deception (D&D), the ability to use the manipulation of
			facts and fictions to engage with an ever-clever set of cvber
			actors and prevent them from carrying out their mission
			objectives against your infrastructure. This paper provides
			an entry point for those not familiar with the practice of
			D&D and how these conshibition can be incomposed distant
			the Nuclear Energy Device
			the Nuclear Energy Domain.
25	D XX7-4	Class has data a '	In this work, we down a strate on alternative in the strate of
27	B. Watson;	Glass Dox data science on	In uns work, we demonstrate an alternative visualization of
	L.Watson;	ATT&CK	the MITRE ATTACK framework for ICS, using formal
	D. Blaauw		concept lattices to nighlight deep structures. ATT&CK
			comprehensively shows threat actors' tactics, techniques
			and procedures but there remain further connections which

			are not found without exploratory data science. Lattices
			provide glass-box data science/machine learning –
			highlighting the relationships between threat actors, as well
			as differences that can be used for attribution.
28	U. Glaesser;	AttackTracker: Dynamic	Complex cyber-physical systems necessitate advanced
	Z. Zohrevand	Attack Scoring using	analytic methods for situational awareness of physical and
		Distributed Local	cyber threats to support supervision and decision-making
		Detectors.	processes. We explore here a scalable and unsupervised
			end-to-end framework for online intrusion detection in
			stream data from supervisory control systems used in the
			continuous operation of critical infrastructure.
29	L. Sukhostat	Anomaly detection in	An approach based on the Hierarchical Hidden Markov
		industrial control system	Model (HHMM), which is applied to detect anomalies in
		based on the hierarchical	the industrial control system (ICS), is proposed. Signals of
		hidden Markov model.	the system components are fed to the proposed model input.
			The model can correlate events occurring relatively far from
			each other. Each of the latent states is also an IDOA. The
			probabilistic model so that each state is also an HMM. The
			approach is evaluated on two datasets. ICS actuators and soncors measurements detect and a network traffic detect
			HHMM can detect abnormal activity in both physical and
			network systems
			network systems.
30	S. Mehdiyev	On monitoring the	During operation, cyber-physical systems (CPSs) are
		technical condition and	constantly exposed to a wide range of factors that affect
		technological safety of	their technical condition in different ways. With increasing
		functional elements of the	interaction in the CPSs environment, physical systems
		corporate cyber-physical	become more and more susceptible to security
		infrastructure	vulnerabilities. The key issues for ensuring the safety of the
			CPSs are as follows:Understanding the threats and possible
			consequences of attacks. Determination of the unique
			properties of CPSs and their differences from the security of
			traditional information systems.
		POSTER	Session
21	T. Downowowo	Analysis of modorn	Errors and uningrabilities in software are analyzed and
51	1. Dayramova	methods for detecting	problems of their detection are considered. Existing modern
		vulnerabilities in software	methods of vulnerability detection using artificial
		for industrial information	intelligence technologies are studied. In addition to
		systems.	detecting these cybersecurity vulnerabilities in a timely
		·	manner, it specifies the correct choice of software
			development technologies, methods and operating
			conditions to prevent them.
	<b>T D</b> ( <b>P</b>		
32	T. Fataliev;	Science 4.0: Complex	It is supposed to consider the conceptual issues of the
	IN.IN. Veraiyeva	solution machanisma	Science 4.0 based on the key technologies of Industry 4.0
		solution mechanisms.	Internet of Things Cyber-Physical Systems Artificial
			Intelligence Cloud computing Rig Data analytics and other
			Smart solutions; eScience considered to be the technological
			base of Science 4.0; research of complex security problems
			and their solution mechanisms within Science 4.0.

33	S. S. Ojagverdiyeva	About a Comprehensive	This study provides information on the concept of the safety
		Approach to Ensuring the	of children's data environment. It highlights the concept of
		Children's Safety in Terms	Children 4.0, which offers a comprehensive approach to
		of Industry 4.0.	ensuring the safety of data included in databases (medical
			data safety, spatial data safety, etc.) through wearable
			devices. This approach is also very important in protecting
			children's personal data.
			Keywords. Industry 4.0, Wearable, sensors, IoT, child
			safety, Children 4.0, smart things.
34	R. Shikhaliyev	Some approaches to	For security of the modern industrial control systems (ICS)
		intellectual monitoring of	basic protective tools can be used. These tools can protect
		industrial control systems	against common attacks and be sufficient for low-risk
		cyber security.	systems. The required security level of the ICS be ensured
			by constantly monitoring. With increase of the monitoring
			data volume, increase the costs of ICS resources
			consumption, as well as the data analysis becomes more
			complicated. It is necessary to intellectualize the security
			monitoring of the ICS. The purpose of this article is to study
			the approaches to intellectualization of monitoring the
			security of ICS.
35	F. Aghayev;	Risk analysis and	The article shows the problems of information security in
	M. Gulara	assessment of the level of	Education 4.0, identifies the most vulnerable spots in the e-
		security of the educational	violation of information acquitivia comind out and the main
		system in Education 4-0.	directions of protection of the e education system are
			shown. The need to protect advectional recourses from
			shown. The need to protect educational resources from
			of the problem and existing approaches to ensure
			information security. The article describes a model for
			assessing the security of an e-education system based on an
			indecipherable correspondence processing algorithm
			Possible threats in the e-education system and actions to
			eliminate these threats have been identified. The results
			obtained can be used by tutors and the administration of e-
			education to ensure the protection of educational content.
36	K. Hashimova	Problems of intelligent	AI plays a special role in new technologies used to develop
		network management of	advertising and marketing. It plays a special role in
		smart billboards on the	improving effectiveness and marketing, has had its say in
		IoT platform in Industry	the business market, and this process continues. A quick
		4.0	search for any product on Internet search engines is an
			indispensable process for the marketing market. It is
			possible with the help of artificial intelligence to provide a
			virtual environment, street advertising, the required product
			or service promptly, at a high level, considering the
			individual characteristics of the customer. In the modern
			world of cyber-physical systems, machines created using
			intelligent algorithms facilitate human labour in almost all
			areas. Intelligent management of a network of smart
			billboards on AI research in advertising and marketing has a
			positive impact on economic development. The article
			discusses the use of artificial intelligence in advertising, the
			principle of their work, the processes of applying new
			technologies in this area. The article analyzes scientific
			researches of the problems on the topic, their solutions,
			generalization of the results and the method of a systematic

			approach.
37	Bikes Agayev	A methodology based on	Acoustic noise pollution is currently a global environmental
		cyber physical systems	problem. Many citizens are interested in the following
		platform for assessment of	question: what is the level of noise pollution where I live,
		the safety of acoustic noise	work or travel? Does it meet standards? An ordinary citizen
		pollution	cannot monitor noise by standard methods. This process is
			complicated, and required equipment is expensive.
			However, the computing, communication and sensory
			functions of modern mobile phones allow monitoring. To do
			this, they need simple and straightforward methodologies.
			The article proposes a simple monitoring methodology. A
			number of experiments are being carried out.
30	K Dachdaminava	Cybor socia tashnalagisal	The article analyzes the evolutionary history of industrial
30	<b>K.</b> Dashuanniova	nroblems of the networked	revolutions, and points out the beginning of building a
		society and their analysis	"Society 5.0" or "Super Intelligent Society" in some
		society and then analysis	countries Moreover the current state of digital technologies
			affecting the technological and social development of
			society is analyzed the socio-technological problems of the
			Internet in a networked society are studied. It is shown that
			many innovations that Industry 4.0 brings to the life of a
			networked society will exacerbate many problems.
39	G. Nabibayova	Analysis and research of	In order to solve the problem posed in the article, the
		the impact of Industry 4.0.	characteristics of the Industry 4.0 (Fourth Industrial
		challenges on demographic	Revolution) are considered. In addition, the possibility of
		processes	threats to the data security of an electronic demographic
			decision support system (DSS) from attackers in the context
			of Industry 4.0 is considered, since the attack risks for them
			is very high. It is found out that damage to these data will
			impact on the course of demographic processes in the
			region. Solution ways of arisen problems are indicated.
40	I. Alakbarova	On one approach for	Video surveillance systems are installed wherever it is
		detecting social	important to ensure public safety. Determining social
		relationships by analyzing	relationships by observing the behavior of citizens is a very
		video images in e-	complex process. The article proposes a new approach for
		government	identifying social relations based video analysis.
			Keywords: video surveillance system, videimages, big data,
			social relations, video analytics.